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Abstract We examine the long-run relationship between fertility, mortality, and income
using panel cointegration techniques and the available data for the last century. Our main
result is that mortality changes and growth of income contributed to the fertility transition.
The fertility reduction triggered by falling mortality, however, is not enough to overcompen-
sate the positive effect of falling mortality on population growth. This means that growth of
income per capita is essential to explain the observed secular decline of population growth.
These results are robust to alternative estimation methods, potential outliers, sample selection,
different measures of mortality, the sample period, the inclusion of education as an explan-
atory variable, and the use of different data sets. In addition, our causality tests suggest that
fertility changes are both cause and consequence of economic development.
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1 Introduction

Every successfully developing country runs through two transformations, an industrial revo-
lution, characterized by a secular take-off of income per capita, and a demographic transition,
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characterized by decreasing mortality and fertility rates. Although there are also important
issues of timing the most salient observation is the close chronological proximity of both
transformations suggesting that they are causally related.

The most debated question in this respect is probably whether the fertility decline is mainly
caused by declining mortality—this would be the typical demographer’s view—or whether
declining fertility is essentially caused by technological change and the associated secular
rise of income per capita and the demand for human capital—the typical economist’s view.
Moreover, unified growth theory argues that fertility changes are both cause and consequence
of economic development (Galor 2005).

The objectives of this paper are to examine the long-run effects of mortality and income on
fertility and to disentangle the intricate problems of causality. Specifically, we make two main
contributions: first, we apply panel cointegration techniques to data for the period from 1900
to 1999. Panel cointegration estimators are robust under cointegration to a variety of estima-
tion problems that often plague empirical work, including omitted variables and endogeneity
(see, e.g., Banerjee 1999; Baltagi and Kao 2000; Pedroni 2007).

The greatest advantage of cointegration techniques is perhaps the invariance of the coin-
tegration property to an extension of the information set (Lütkepohl 2007). This justifies the
focus on a small “subsystem” that neglects other potential drivers of economic growth and
the demographic transition. In other words, if we find that fertility, mortality, and the log of
income are cointegrated, the found relationship between these variables is robust against the
inclusion of further variables that are thought to be relevant for demo-economic development
as well. We demonstrate this property below by adding a further important variable of the
fertility transition, education. This means that, although we cannot include education right
from the beginning because of data limitations, the cointegration property ensures that we can
rigorously analyze the income and mortality channel of fertility without considering jointly
education and all other potential channels of the fertility transition.

Because the demographic transition is an inherently dynamic phenomenon, the most inter-
esting quest for causality is probably along the time-dimension. As a second contribution,
we therefore examine if and to what extent an observable fertility change should be seen
as a response to a preceding change of mortality or as a response to a preceding change of
income. For this purpose we use Granger-causality tests and impulse response functions.
These techniques appear to be the most appropriate tools because the idea of causality in the
Granger sense is that the cause occurred before the effect.1

The remainder of the paper is composed of four sections. In Sect. 2, we discuss the theo-
retical background and the empirical evidence. Section 3 sets up the basic empirical model
and describes the data. Section 4 presents the econometric implementation and our main
results. It documents that economic growth as well as declining mortality explain large parts
of the fertility decline observed during the last century, that declining mortality per se is
insufficient to explain the secular decline of population growth, and that, in accordance with
the main thesis of unified growth theory, fertility changes are both cause and consequence of
successful economic development. Section 5 concludes. A detailed description of the data
and of our econometric tests can be found in the Appendix.

1 Nevertheless it could be that Granger causality fails to identify true causality. It could be that the cointegrated
variables are driven by another neglected process. This, however, would not affect the identified stationary
relationship between the cointegrated variables.
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2 Theoretical background and empirical evidence

2.1 Theory

Most of the available theories of the demographic transition focus either on the impact of
mortality or on the impact of income and economic growth on fertility. Demographers seem
to emphasize the mortality channel while economists emphasize the role of economic devel-
opment and the associated rise in the growth in income, the demand for human capital, and
the decline in the gender wage gap.

Among the most prominent explanations for the mortality channel are physiological mech-
anisms (the link between breastfeeding and fecundity) and the concept of an ideal family size
(implying the wish for replacement of deceased children). Inspired by the observation that
in most countries—France is a prominent outlier—the mortality decline occurred before the
fertility decline, many demographers argue in favor of a causal impact of mortality on fertility
(Cleland 2001). The so far available econometric evidence, however, has been mixed. In a
popular survey Kirk (1996) concludes: “It is perhaps surprising that while mortality decline
is usually cited as the raison d’ étre for fertility decline, it is not often accorded a primary
place as a cause of fertility decline. This is understandable, since efforts to establish a direct
close connection have had mixed results. Whilst definite proof of this connection may not
be possible, there exists cogent reasons for supposing that it exists.”

While conventional physiological channels can rationalize a negative association between
fertility and mortality, they are certainly insufficient to explain the demographic transition
understood as the secular decline of net fertility, i.e. of the number of surviving children
per family and thus the secular decline of population growth. For that, economic theory has
proposed several refinements of the theory. Most well-known is probably the idea of precau-
tionary child-bearing of risk-averse parents (Sah 1991; Kalemli-Ozcan 2002). More complex
theories involve the interaction between extrinsic survival conditions and child health (Strulik
2008) and the impact of adult longevity on fertility (Soares 2005; Cervellati and Sunde 2007).

Many economic theories of fertility, however, without explicitly denying a role of mor-
tality, argue in favor of an independent, stand-alone impact of economic development on
fertility. The main objective of the earlier literature was to explain a negative association
between income and fertility without abandoning the assumption of children as “normal
goods” (Becker 1965; Becker and Lewis 1973). With the rise of unified growth theory (Galor
2005, 2011) the economic analysis of fertility has been reframed in a dynamic context.
The focus shifted away from the association between fertility and income (across countries)
towards the association between fertility change, income growth, and human capital forma-
tion (within countries over time). Moreover, the time-cost idea and the child quality–quantity
trade off have been refined in several new ways. For example, it has been proposed that rising
income—as a proxy for technological progress—is associated with a reduction of the com-
parative advantage of men in production and thus rises the opportunity cost of fertility for
women (Galor and Weil 1996), that technological progress raises the importance of human
capital (education, child quality) vis a vis raw labor in production since educated individu-
als have a comparative advantage in a changing technological environment (Galor and Weil
2000; Galor and Moav 2002), and that technological progress changes the structural compo-
sition of the economy toward manufacturing and thus raises the relative price of nutrition, i.e.
the relative price of child quantity (Kögel and Prskawetz 2001; Strulik and Weisdorf 2008).2

2 Other channels that have been invoked in order to generate or amplify a negative impact of income or income
growth on fertility are the old-age security hypothesis (Neher 1971; Strulik 2003) and child labor (see e.g.
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A common element of these theories is that—without further assumptions—mortality
plays no role in explaining population growth. Indeed if child mortality is added in a stan-
dard fashion to these frameworks it cancels out in the computation of the optimal net rate of
reproduction (i.e. net fertility, see Doepke 2005; Galor 2011). Without further augmentation
these models thus predict that a change of mortality leads to a one-to-one response of fertil-
ity and has no consequences on population growth. An impact of mortality on fertility can
be established by abandoning the assumption of homothetic utility. In an earlier discussion
paper version of this article we have shown that a thus accommodated model predicts that
net fertility is negatively associated with mortality, implying the prediction that declining
mortality is not sufficient to explain the phenomenon of declining population growth during
the demographic transition (Herzer et al. 2010; see also Strulik and Weisdorf 2012).

2.2 Evidence

There exists still surprisingly little macro-econometric evidence on the determinants of fertil-
ity in modern (i.e. post-Malthusian) times.3 Overall, the available literature provides a mixed
and inconclusive picture. Across countries Brander and Dowrick (1994) document a negative
association between fertility and economic growth, Schultz (1997) finds that income per adult
is negatively associated with mortality and positively with fertility, and Ahituv (2001) finds
a negative association between fertility and income per capita. Lorentzen et al. (2008) find
a positive association between fertility and mortality and (indirectly) a negative association
between fertility and economic growth. Without explicitly considering fertility, Acemoglu
and Johnson (2007) observe a negative impact of life-expectancy on income per capita.
Cervellati and Sunde (2011) demonstrate that this result depends heavily on the selected
sample. In particular for countries that have already initiated the fertility transition, they
document a causal positive effect of improving life-expectancy on economic growth. With
contrast to the present paper they infer causality from IV estimates and not from Granger-
causality and do not investigate the long-run determinants of fertility behavior.

More closely related to our approach is the work of Wang et al. (1994); Eckstein et al.
(1999); Angeles (2010), and Murtin (2012). Wang et al. use a structural VAR model and US
data from the second half of the twentieth century and document the endogeneity of fertility
in a cointegrated system together with output and employment. The impact of mortality is not
investigated. Eckstein et al. use long-run Swedish data from 1751 to 1990 to fit a five-period
overlapping generation model, which takes child mortality and income as (exogenous) deter-
minants of fertility. They identify a negative impact of income on fertility and child mortality
as the most important factor explaining the fertility decline. Interestingly, they also find that
child mortality is not sufficient to explain the secular fall of net fertility. For that rising income
is essential.

Like us, Angeles (2010) and Murtin (2012) use panel data. Angeles employs the Arellano
and Bond (1991) difference-GMM estimator to account for the potential endogeneity of fer-
tility and finds that a fall in mortality induces a significant reduction in fertility while the

Footnote 2 continued
Hazan and Berdugo 2002; Doepke 2004; Strulik 2004). Moav (2005) generates a negative impact of income
on fertility by assuming a preference for child quality and that bearing children involves time costs whereas
educating children involves monetary costs (Moav 2005).
3 There exists a relatively large literature on fertility in pre-modern times, i.e. times for which Malthusian
theory predicts a positive association between fertility and income and a negative association between pop-
ulation density and income. See, among others, Eckstein et al. (1984); Galloway (1988); Lee and Anderson
(2002); Nicolini (2007), and Ashraf and Galor (2011). Microeconometric evidence is compiled in Schultz
(1997).
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impact of GDP per capita on fertility is statistically insignificant. Murtin, using the Blundell
and Bond (1998) system-GMM estimator, reports that neither per capita income nor mortality
has a robust significant effect on fertility. His results suggest that years of primary schooling
are the only robust determinant of fertility.

However, dynamic panel GMM techniques are not without problems. The concern that
weak instruments typically bias coefficient estimates towards their unadjusted counterparts
(OLS or fixed-effects estimates) applies as much to panel GMM as to cross-section esti-
mators. Bun and Windmeijer (2010), for example, show that the weak instrument problem
—previously attributed to the Arellano–Bond difference GMM estimator—is equally prob-
lematic for the Blundell–Bond system approach. Roodman (2009) warns that the Blundell–
Bond estimator may give a false sense of certainty as a large number of internal instruments
can overfit the endogenous variables and may weaken the power of the Sargan test. Moreover,
it is well-known (and in detail documented by Reher 2004) that the lag structure between
mortality decline and fertility decline differs widely across countries. For a sample of more
than one hundred countries we thus expect problems arising from the assumption of a com-
mon lag structure. We are therefore confident that our cointegration approach advances the
state-of-the art empirical research on the long-run determinants of fertility.

3 Empirical model and data

Since it may take a long time before changes in mortality and the standard of living are
reflected in changes in fertility, we adopt an empirical specification that captures the long-run
relationship between these variables. In this section, we present the empirical specification,
discuss some econometric issues, and describe the data.

3.1 Empirical specification and econometric issues

Our basic empirical model is given by

f er ti t = ai + β1 · mortit + β2 · log(gdpit ) + eit (1)

where i = 1, 2, . . . , N and t = 1, 2, . . . , T are country and time indices, f er ti t is fertility,
measured by the crude birth rate (births per thousand population), and mortit stands for
mortality, measured by the crude death rate (deaths per thousand population). We use the
crude death rate and not infant or child mortality because the crude death rate captures more
effectively the full effect of mortality on fertility including effects from adult longevity (later
on we check robustness of our results by substituting infant mortality into the regression).
In general, the total fertility rate would have been a better measure of current fertility than
the crude birth rate because it is not affected by the age distribution of the population. Total
fertility rates, however, are not available for a sufficiently large number of countries over the
last century. Using crude birth and death rates, however, provides also an advantage in that
we can readily infer from our estimates the impact of mortality decline on population growth.

The level of economic development is represented by GDP per capita, gdpit , measured in
logs, as is common practice in the related empirical literature. Moreover, the measurement in
logs has important implications with respect to the underlying test of demo-economic theory.
To see this, differentiate (1) and obtain the change of fertility d f er ti t as a function of the
change of mortality dmortit and of the growth rate of GDP per capita, dgdpit/gdpit . With
respect to the demographic transition Eq. (1) thus stipulates that fertility change is associated
with income growth as suggested by unified growth theory.
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The β coefficients in (1) capture the long-run effects of mortality and income on fertil-
ity. Because our principal interest is on long-run effects, it is not essential to be concerned
about the variable lags through which mortality and per capita income affect fertility. Finally,
we include country-specific fixed effects, ai , to control for country-specific factors that are
relatively stable over time, such as geography and culture.

Equation (1) assumes a long-run trivariate relationship between permanent movements
in the crude birth rate, the crude death rate, and the log level of GDP per capita. Necessary
conditions for this assumption to hold are that the individual time series for fertility, mortality,
and per capita income are nonstationary or, more specifically, integrated of the same order
and that f er ti t , mortit , and log(gdpit ) form a cointegrated system.4

A specific advantage of the cointegration framework is that a regression consisting of
cointegrated variables has a stationary error term, implying that no relevant integrated vari-
ables are omitted. Any omitted non-stationary variable that is part of the cointegrating rela-
tionship would enter the error term eit , thereby producing non-stationary residuals and failure
to detect cointegration. If, on the other hand, there is cointegration between a set of vari-
ables, then the same stationary relationship exists also in an extended variable space (see,
e.g., Johansen 2000); if the variables are nonstationary and not cointegrated, the error term
is nonstationary as well, and Eq. (1) would in this case represent a spurious regression in the
sense of Granger and Newbold (1974).

These features are particularly important with respect to education as an omitted variable.
Theory, in particular unified growth theory, as well as other other empirical studies (e.g. the
work of Schultz 1997; Angeles 2010; Murtin 2012) suggest that education is an important
explanatory variable for fertility besides mortality and income. Here we have not considered
education in the first steps of our analysis because the purpose of the paper is to scrutinize the
effects of income growth and mortality change on fertility change over the last century and
education data is not available as a long enough time series for sufficiently many countries for
the whole last century. It is thus important to emphasize that the cointegration tests described
below imply that omitted education does not bias our results on the long-run relationship
between mortality, fertility, and income. In order to demonstrate this feature, we use in Sect.
4.2. A smaller sample of countries with less time series data (due to the limited availability
of education data) and include in our robustness checks several measures of education.5

The existence of a long-run relationship between fertility, income and mortality does not
exclude the possibility of long-run Granger-causality running from fertility to GDP per capita
and mortality. According to neoclassical growth theory, for example, high population growth
due to increased fertility lowers income per capita because capital is spread more thinly over
the population. On the other hand, population growth plays quite a different role in many
R&D-based models of endogenous growth (Romer 1990; Jones 1995). Strictly interpreted,
i.e. in the sense that “more people means more Isaac Newtons and therefore more ideas”
(Jones 2003), these theories predict that higher population growth leads to higher economic
growth and thus to higher income per capita. Finally, an increase in fertility may also lead

4 Since our system has three variables, the existence of one cointegrating relationship would imply that there
are two permanent shocks, or common trends, and one transitory shock (Stock and Watson 1988). There are, of
course, a number of factors and mechanisms that could be the driving forces behind permanent and temporary
shocks. Potential candidates for the two common trends are productivity and health trends, while, for example,
changes in the age structure or deaths due to war could be viewed as temporary shocks.
5 There are, of course, potentially several others factors conceivable that influence fertility (such as gov-
ernment policy and health status). Adding further variables may result in further cointegrating relationships.
Since the cointegration property is invariant to extensions of the information set, the inclusion of additional
variables would, however, not destroy the original cointegrating relationship (Lütkepohl 2007). This justifies
to consider small “subsystems”, such as Eq. (1), if the variables are cointegrated.
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to an increase in mortality because a larger number of children per household could entail
fewer resources available to invest in health of each child (Strulik 2008).

The overall empirical implication is that it is not only crucial to examine the time-
series properties of the variables and to test whether the variables are cointegrated, but it is
also important to deal with these endogeneity problems and to investigate the direction of
causality.

3.2 Data and descriptive statistics

The analysis of the long-run relationship between fertility, mortality, and income requires the
use of data over a long time window. Therefore, we select a sample of countries for which
continuous data are available over a 100 year period from 1900 to 1999. Data on birth and
death rates are from the database compiled by David Reher (2004) and data on (real) per capita
GDP are from Maddison (2003), available at http://dx.doi.org/10.1787/456125276116. Since
Reher’s data are averaged over five years, we use 5 year averages of all variables. (20 time
series observations per country). An estimator of cointegrating vectors constructed with tem-
porally aggregated data is consistent (see, e.g., Granger 1990) and asymptotically as efficient
as the estimator based on disaggregated time series, when, as in our case, all the variables in
the cointegrating vector are flows (see, e.g., Chambers 2003). Chambers (2001), for exam-
ple, demonstrates that estimates from cointegrating regressions are remarkable stable across
frequencies, which is consistent with the well-known finding that the power of unit root and
cointegration tests depends far more on the time span than on the number of observations
(see, e.g, Shiller and Perron 1985; Hakkio and Rush 1991; Lahiri and Mamingi 1995).

We include all countries with complete time series, resulting in a balanced panel with 400
observations and 20 countries. As illustrated in Fig. A.1 in the Appendix, these countries
are geographically dispersed around the world, located in North America (Canada), Central
America (Mexico), South America (Argentina, Chile, Colombia, Uruguay, and Venezuela),
Europe (Belgium, Denmark, Finland, France, Italy, Netherlands, Norway, Portugal, Spain,
Sweden, and Switzerland), South Asia (Sri Lanka), and East Asia (Japan).

In the figures in Appendix A1 we show the data for each country separately over the
period 1900–1999. As can be seen, fertility and mortality exhibit a decreasing trend in all
cases except for Denmark where mortality declined from 1900 to 1954 and then rose between
1955 and 1999 (see Fig. A.2, row 2, column 2). Real GDP per capita, in contrast, exhibits
a strong upward trend in all countries. Overall, the time-series evolution is consistent with
the possibility that f er ti t , mortit , and log(gdpit ) are nonstationary and cointegrated, an
observation which we confirm by several panel unit root test and panel cointegration tests
(Appendix A1 and A2).

Table 1 lists the countries along with the average values of the crude birth and death rates
and average GDP per capita over the period of observation. As expected, there are large
cross-country differences in the values of these parameters. Mexico is the country with the
highest fertility rate, followed by Venezuela, Colombia, and Chile, while Belgium ranks at
the bottom of the fertility scale. Mexico is also the country with the highest mortality rate,
followed by Chile, Sri Lanka, and Colombia. Average income is highest in Switzerland, and
lowest in Sri Lanka, Colombia, and Mexico. Altogether, it appears that countries with higher
mortality rates and lower per capita income tend to have higher fertility rates, suggesting
a positive relationship between fertility and mortality and a negative relationship between
fertility and income.

The last column in Table 1 reports the year of the onset of the fertility transition as
identified by Reher (2004). In all but two countries (Sweden and Uruguay) the fertility
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Table 1 Countries and country
summary statistics

Numbers for birth rates and death
rates (in per thousand) and for
GDP are country averages
1900–1999. Onset of the
transition is the year of onset of
the fertility transition as
identified by Reher (2004)

Crude birth
rate

Crude death
rate

GDP per
capita

Onset of
transition

Argentina 27.12 11.67 5356.13 1910

Belgium 16.61 12.94 8189.49 1905

Canada 22.64 9.50 9224.20 1915

Chile 34.02 17.70 4186.88 1960

Colombia 38.57 16.14 2532.02 1965

Denmark 18.89 11.02 9159.57 1910

Finland 20.57 12.85 6694.22 1915

France 16.70 13.93 8014.96 1900

Italy 20.46 13.66 6813.96 1925

Japan 24.14 13.19 6425.85 1950

Mexico 40.88 19.92 3280.14 1970

Netherlands 20.89 9.96 8586.86 1910

Norway 18.55 10.92 8043.81 1905

Portugal 24.11 14.78 4107.80 1925

Spain 22.32 14.28 4901.11 1910

Sri Lanka 33.33 16.64 1516.44 1960

Sweden 16.64 11.62 8553.14 1865

Switzerland 17.47 11.40 10971.08 1910

Uruguay 22.89 10.44 4516.13 1890

Venezuela 39.01 15.54 5937.70 1965

transition began in 20th century, indicating that we focus indeed on the most interesting
century of demographic change. Twelve countries experienced the onset in the first half
of the last century while 6 countries experienced it in the second half. The large variation
of the onset of the transition across countries could be one explanation for the problem of
earlier studies (by focussing on individual countries or across countries on a single year or
on a shorter time period) in identifying a general pattern for the long-run determinants of
fertility.

4 Empirical analysis

The pre-tests for unit-roots and cointegration, which are reported in the Appendix, suggest
that the variables are nonstationary and cointegrated, as assumed in Eq. (1).6 In this sec-
tion, we provide estimates of the cointegrating relationship between fertility, mortality, and
income, test the robustness of the estimates, and investigate the direction of causality between
the three variables.

6 Two or more non-stationary variables are cointegrated if there exists a linear combination of these variables
that is stationary. Cointegration, in the traditional, linear sense, therefore implies that the long-run relationship
between the variables is linear.
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4.1 Long-run relationship

In order to estimate the long-run elasticities of fertility with respect to mortality and per
capita income, we use the dynamic ordinary least squares (DOLS) estimator. This estimator
is asymptotically equivalent to Johansen’s (1988) system estimator. It generates unbiased
and asymptotically efficient estimates of the long run relationship, even with endogenous
regressors (see, for example, Stock and Watson 1993), thus allowing us to control for the
potential endogeneity of mortality and per capita income. In addition, it is well-known that
in small T samples (like ours) the DOLS estimator performs better than other available esti-
mators, like, for example, the FIML estimator of Johansen’s (1988) or the fully modified
ordinary least squares (FMOLS) estimator of Phillips and Hansen (1990). This is true for
time series models as well as for panel data models (see, e.g., Stock and Watson 1993; Kao
and Chiang 2000; Wagner and Hlouskova 2010). Following Kao and Chiang (2000), the
within-dimension-based DOLS model for our research question is given by (2).

f er ti t = ai + β1 · mortit + β2 · log(gdpit ) +
k∑

j=−k

�1i j�mortit− j

+
k∑

j=−k

�2i j� log(gdpit− j ) + εi t (2)

where �1i j and �2i j are coefficients of lead and lag differences which account for possible
serial correlation and endogeneity of the regressors, thus yielding unbiased estimates of β1

and β2. The results of this estimation procedure are presented in the first row of Table 2
where, for brevity, we report only the estimated β coefficients. The coefficient on mortit is
highly significant and positive, while the GDP per capita variable has a highly significant
negative coefficient.

Our estimates imply that a reduction of the mortality rate is associated with an increase
of the population growth rate holding GDP constant.7 From that we conclude that declining
mortality is insufficient to explain the declining population growth observed along the path of
demographic transition. Although mortality is identified as an important driver of decreasing
fertility, GDP growth is essential in order to explain the secular decline of population growth.

Finally, in the bottom part of Table 2, we present the results of some diagnostic tests. JB
is a Jarque-Bera test for normality, RESET is a Ramsey RESET test for general nonlinear-
ity and functional form misspecification, HET stands for a Breusch–Pagan–Godfrey test for
heteroscedasticity, LM(k), k = 1, 3, are Lagrange Multiplier tests for autocorrelation based
on one and three lags, and STABILITY is an Lc type panel test for parameter instability
in the style of Hansen (1992).8 All statistics presented in the diagnostics are Fisher (1932)
statistics, defined as λ = −2

∑
i log(pi ), where pi is the p value of the country-specific

7 This can be readily observed from the coefficient of mortality being smaller than one. Fertility and mortality
are both measured as crude births and deaths, respectively, per 1,000 population, thus the difference between
the two is net-fertility/population growth.
8 The Lc test statistic is a Lagrange multiplier test of the null hypothesis of constant parameters against the
alternative that the parameters follow a martingale process. It has the advantage that the timing of the structural
break is treated as unknown. Because our panel test statistic for parameter stability is a Fisher (1932) statistic
which in turn is based on computing the Lc statistics for each country separately, the timing of the possible
structural shift is allowed to vary across countries.
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Table 2 Long-run relationship of fertility with mortality and GDP

mortit log(gdpit )

Within-dimension DOLS estimator 0.378∗∗ (7.40) −5.246∗∗ (−10.18)

Kao and Chiang (2000)

DOLS mean group estimator 0.747∗∗ (9.04) −5.489∗∗ (−12.83)

Pedroni (2001)

CCE mean group estimator 0.880∗∗ (10.45) −4.456∗∗ (−11.23)

Pesaran (2006)

2-step estimator 0.855∗∗ (11.33) −8.455∗∗ (−19.87)

Breitung (2005)

Diagnostic tests

JB 18.73 [0.998]

RESET 45.07 [0.268]

HET 36.60 [0.624]

LM(1) 39.09 [0.511]

LM(3) 46.42 [0.225]

STABILITY 42.69 [0.356]

The dependent variable is f er ti t
t Statistics in parentheses
The DOLS regression was estimated with one lead and one lag (as suggested by the Schwarz criterion)
All statistics presented in the diagnostics are Fisher (1932) statistics, which are based on the country-specific
diagnostic tests of the respective DOLS model
The Fisher statistic is distributed as χ2 with 2 × N degrees of freedom
The numbers in brackets are the corresponding p values
∗∗ Indicate significance at the 1 % level

diagnostic test of the respective DOLS model; the Fisher statistic is distributed as χ2 with
2 × N degrees of freedom.9

As can be seen, all test statistics reject the respective null hypothesis, suggesting that
neither obvious nonlinearity nor misspecification is present, that the residuals show no signs
of non-normality, autocorrelation or autoregressive heteroscedasticity, and that the estimated
parameters are stable. Since parameter constancy may imply a cointegrating relationship,
whereas parameter instability and structural change can lead to the finding of no cointegration,

9 The purpose for using diagnostic tests is to verify the overall adequacy of a model. Tests for normality,
autocorrelation, heteroskedasticity, misspecification, and instability are tests that are routinely applied in time
series studies to assess whether a model can be described as well-specified. Unfortunately, there is a lack of
diagnostic testing procedures in panel econometrics. In the words of Banerjee et al. (2010), p. 2: “By and large,
panel estimation is a misspecification-test-free zone.” Assuming that diagnostic testing is equally important
in a panel as in the time-series context, it is necessary to find a way to modify the time-series diagnostics in a
panel context. For this purpose, we pool the diagnostic test statistics of the individual countries by calculating
Fisher (1932) statistics. This approach has also been used by Banerjee et al. (2010), who investigate the per-
formance of several modified time-series diagnostic tests in panel data. Banerjee et al. (2010, 34) conclude,
based on Monte Carlo studies of several panel estimators, that “estimators, properly defined and constructed,
do have sound residual properties and diagnostic tests based on these estimators do have power in detecting
misspecification, which if unaccounted for can lead to serious deficiencies in the interpretation of empirical
results.”
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the finding of stability is consistent with the finding that f er ti t , mortit , and log(gdpit ) are
cointegrated without a structural break in the cointegrating vector.10

4.2 Robustness checks

To assess the robustness of our conclusions, we perform several sensitivity checks. First,
we investigate whether the estimates are robust to alternative estimation methods. Specif-
ically, a potential problem with the above estimation procedure could be that it assumes
homogeneous β coefficients, which may be empirically incorrect. Countries differ widely
in terms of economic structure, institutions, government policy, and other characteristics,
implying that the effects of mortality and income on fertility could also differ across coun-
tries. To allow the slope coefficients to vary across countries, we use the between-dimension,
group-mean panel DOLS estimator suggested by Pedroni (2001). This estimator involves
estimating separate DOLS regressions for each country and averaging the long-run coef-
ficients, β̂ = N−1 ∑N

i=1 β̂i . The t statistic for the average coefficient is calculated as the
sum of the individual t statistics divided by the root of the number of cross-sectional units,
t
β̂

= ∑N
i=1 t

β̂i
/
√

N . We present the DOLS group-mean point estimates of the effects of
mortality and income on fertility in the second row of Table 2.

Because the DOLS estimates could be biased in the presence of cross-sectional depen-
dence, we also report (in the third row) the result of the common correlated effects (CCE)
mean group estimator suggested by Pesaran (2006).11 Compared to the use of common
time dummies (to control for cross-sectional dependence through common time effects),
as is common practice in panel studies, the CCE mean group estimator has the advantage
that it allows for cross-sectional dependencies arising from multiple unobserved common
factors, and that it permits the individual responses to the common factors to differ across
countries. It augments the cointegrating regression with the cross-sectional averages of the
dependent variable and the observed regressors as proxies for the unobserved factors (see
Eq. (A.8) in the Appendix). Kapetanios et al. (2011) have recently shown that the CCE
estimator is consistent regardless of whether the common factors are stationary or non-
stationary.

The idea behind the inclusion of common time dummies is to extract common time
effects from the data in order to account for cross-sectional dependence through com-
mon time effects. However, for this approach to be effective in eliminating or reducing
the cross-sectional dependence, the cross-sectional dependence must be driven by a sin-
gle common source, and the response to the common factor must be the same for all
countries (Pedroni 2007). We estimated the DOLS model also with time dummies. The
results, which are qualitatively similar to those in Table 2, are reported and discussed in the
Appendix.

10 Of course, we cannot exclude the possibility that in some individual countries some individual time series
have a unit root with a structural break. Identifying structural breaks in time series data is subtle and tricky,
especially when the number of time series observations is small, and is beyond the scope of this paper. The
crucial point for our analysis is that, even if some of the individual time series had a structural break, it
would not imply a structural break in the cointegrating relationship between the series; it may well be that the
cointegrating relationship is stable, and this is exactly what we find.
11 Cross sectional dependence can arise due to several factors, such as omitted observed common factors,
unobserved common factors, or spatial spillover effects. For example, the data may be in part driven by com-
mon global business cycles or health shocks. Shocks affecting fertility and mortality (and income) in several
countries at the same time include major influenza epidemics, the spread of HIV/AIDS, the introduction of
new vaccines, and the diffusion of antibiotics and contraceptives.
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For completeness, we also present estimates obtained using the two-step estimator
suggested by Breitung (2005). While the estimators discussed above are single equation
techniques, the vector error-correction model (VECM) estimator of Breitung is a system
approach. It involves estimating the Johansen’s (1988) VECM (given by Eq. A.9 in the
Appendix) separately for each country to obtain the country-specific error-correction coef-
ficients ai . In the second step, the estimated ai s are used to estimate the cointegration

matrixβ by running a pooled regression of ẑi t on y(2)
t−1, where ẑi t = (α̂′

i

∑̂−1
i α̂i )

−1α̂′
i

∑̂−1
i �yit

− y(1)
t−1 and yit = [y(1)

t−1, y(2)
t−1].y(1)

t−1 and y(2)
t−1 are r × 1 and (p − r) × 1 sub-vectors

of yit .
As can be seen from Table 2, all four estimators provide qualitatively similar results,

suggesting that both the positive association of mortality with fertility and the negative asso-
ciation of GDP per capita with fertility are neither due to potentially restrictive homogeneity
assumptions, nor due to possible cross-sectional dependence, nor due to the single-equation
specification. As expected, the between-dimension DOLS estimator produces larger esti-
mates (in absolute value) than its within-dimension counterpart, a result that is in line with
the findings of Pedroni (2001). More specifically, the magnitude of the mortality coefficient
is about half as large for the within-dimension DOLS estimator compared to the other three
estimators. For GDP per capita, the coefficients are fairly similar across the two DOLS and
the CEE models, while the GDP per capita coefficient obtained by the two-step system esti-
mator is substantially larger in magnitude. Thus, our main conclusions still hold, albeit less
strongly for the inferred association with population growth.

Given the limited number of time-series observations in our sample, the mean group
results (which are based on individual time-series regressions) should be interpreted with
caution. In addition, the CCE mean group estimator is intended for the case in which the
regressors are exogenous, so that we lose the ability to account for the likely endogeneity of
mortality and per capita GDP. Also, it is worth mentioning that there is evidence to suggest
that the efficiency gains from pooling are likely to offset the potential biases due to individ-
ual heterogeneity (see, e.g., Baltagi and Griffin 1997). In addition, Wagner and Hlouskova
(2010) found that the pooled DOLS estimator outperforms all other estimators-both single
equation and system estimators. We are thus convinced that the pooled within-dimension
panel DOLS estimator is the most appropriate one and continue our robustness analysis for
this estimator.

In order to verify that the positive and negative coefficients of mortit and log(gdpit ) are not
due to potential outliers we re-estimate the DOLS regression excluding one country at a time
from the sample. The sequentially estimated coefficients and their t statistics are presented
in Fig. 1. They indicate that the coefficients of mortit are always significantly positive (and
relatively stable between 0.344 and 0.392) and that the coefficients of log(gdpit ) are always
significantly negative (and relatively stable between −5.581 and −4.882). We conclude that
our results are robust to potential outliers.

Next, we examine whether the positive relationship between fertility and mortality, as
well as the negative relationship between fertility and income are due to sample-selec-
tion bias. Sample-selection bias occurs when the selected sample is not random and thus
not representative. Admittedly, a potential problem with our sample could be that it in-
cludes only 20 countries. We therefore re-estimate the DOLS regression for a second sample
with 1,190 observations for 119 countries over the period from 1950 to 1999 (again using
5 year averages). The sample of countries (listed in Appendix A4) is now much more het-
erogenous and includes also the latecomers of the demographic transition from Asia and
Africa.
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Fig. 1 DOLS estimation with single country excluded from the sample

Table 3 DOLS estimates: 119 countries 1950–1999

in f antmorti t morti t log(gdpit )

0.420∗∗ (13.74) −5.829∗∗ (−11.46)

0.141∗∗ (21.20) −3.029∗∗ (−9.06)

The dependent variable is f er ti t
t Statistics in parentheses
The DOLS regression was estimated with one lead and one lag (as suggested by the Schwarz criterion)
∗∗ Indicate significance at the 1 % level

The results based on this sample are reported in Table 3. The second row shows the
estimated coefficients on the crude death rate and log GDP per capita (the original vari-
ables), while the third row presents DOLS estimates using the infant mortality rate, labeled
in f antmortit , in place of the crude death rate to examine also the robustness of the results
to alternative measures of mortality. The data sources are the same as described above. As
can be seen from the table, the long-run associations of mortality and GDP per capita with
fertility are still positive and negative, respectively, regardless of which sample and mortality
measure is used, indicating that the results are robust to different samples and measures of
mortality.

Another way to examine whether a stable cointegrating relation is a reasonable approxi-
mation of the data is to estimate the cointegrating vector over different time periods (Lettau
and Ludvigson 2004). The fact that the estimated coefficients for the period 1950–1999 are
strikingly similar to those for the period 1900–1999 (0.42 and −5.8 in Table 3 compared to
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Table 4 DOLS estimates for subsamples

mortit log(gdpit ) No. of countries in
subsample

20-country sample

Developed countries 0.623∗∗ (6.25) −4.757∗∗ (−8.22) 12

Developing countries 0.470∗∗ (5.45) −4.021∗∗ (−3.50) 8

119-country sample

Developed countries 0.502∗∗ (5.96) −5.567∗∗ (−4.03) 16

Developing countries 0.487∗∗ (10.45) −4.987∗∗ (−9.83) 103

The dependent variable is f er ti t
t Statistics in parentheses
The DOLS regression was estimated with one lead and one lag (as suggested by the Schwarz criterion). A
country is classified as a developing (non-OECD) country if it was between 1961 (when the OECD was
founded) and 1999 less than 75 % of the time a member of the OECD
∗∗ Indicate significance at the 1 % level

0.38 and −5.2 in Table 2) suggests that our results are not sensitive to the sample period.
This finding is consistent with the stability test result presented in Table 2. Given, however,
that the time period of the estimation in Table 3 is half of that for the estimation in Table 2,
we prefer the results in Table 2.

We next investigate whether our results are driven by developed or relatively rich countries.
To this end, we split both the 20-country and 119-country samples into two sub-samples:
developed (OECD) and developing (non-OECD) countries. The resulting coefficients are
listed in Table 4. Regardless of which sub-sample is chosen, the coefficient on mortit is sig-
nificantly positive, while the coefficient on log(gdpit ) is significantly negative. Remarkably,
there appear to be no significant differences in the associations of mortality and economic
development with fertility between rich and poor countries.

Finally, we examine the sensitivity of our results to the inclusion of education. Following
Murtin (2012), we use three measures of education: average years of schooling (schoolingit ),
average years of primary schooling (schooling Pit ), and average years of secondary and ter-
tiary schooling (schoolingSTit ) in the total population over 15. The data are from Morrisson
and Murtin (2009) and are only available every ten years beginning in 1870 (see http://www.
pse.ens.fr/data/), forcing us to use decade averages of f er ti t , mortit , and log(gdpit ) (since
Reher (2004) reports birth and death rates as 5 year averages). All countries with complete
data for the period from 1900 to 1999 are included, resulting in a balanced panel with 18
countries12 and 10 time-series observations per country (180 observations).

As Table 5 shows, the estimated coefficients on mortit , and log(gdpit ) do not change qual-
itatively if education is added as an explanatory variable. Interestingly, primary schooling is
the only significant education variable (with the expected negative sign), which is consistent
with the results of Murtin (2012). On the other hand, our results differ from Murtin’s in that we
find that both mortality and income are also significantly associated with fertility. Of course,
given the small cross-section and time-series dimensions of the panel, caution is needed when

12 Argentina, Belgium, Canada, Chile, Denmark, Finland, France, Italy, Japan, Mexico, Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland, Uruguay, and Venezuela
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Table 5 DOLS estimates with education

mortit log(gdpit ) schoolingit schooling Pit schoolingSTit

0.452∗∗ (5.72) −8.771∗∗ (−11.68) −0.053 (−0.35)

0.342∗∗ (5.33) −5.225∗∗ (−5.94) −0.703∗∗ (−2.65)

0.396∗∗ (6.12) −7.163∗∗ (−8.09) 0.323 (1.32)

The dependent variable is f er ti t
schoolingit is average years of schooling in the total population over 15, schooling Pit is average years of
primary schooling in the total population over 15, schoolingSTit is average years of secondary and tertiary
schooling in the total population over 15
t Statistics in parentheses
The DOLS regression was estimated with one lead and one lag (as suggested by the Schwarz criterion)
∗∗ Indicate significance at the 1 % level

interpreting these results. Nevertheless, although the education-fertility relationship is not
our subject here, our estimates suggest that education is an important explanatory variable.13

4.3 Causality

Standard growth models predict that higher fertility lowers per capita GDP because physical
capital is spread more thinly over the population. An increase in fertility may also lead to an
increase in mortality because a larger number of children entails less resources available per
child for nutrition and health. Consequently, causality may run from mortit and log(gdpit )

to f er ti t , from f er ti t to log(gdpit ) and from f er ti t to mortit .
To test the direction of causality, we use a two-step procedure. In the first step, we employ

the (within) DOLS estimate of the long-run relationship to construct the disequilibrium term

ecit = f er ti t − [
âi + 0.378 · mortit − 5.246 log(gdpit )

]
. (3)

In the second step, we estimate the vector error correction model (VECM)
⎛

⎝
� f er ti t

�mortit

� log(gdpit )

⎞

⎠=
⎛

⎝
c1i

c2i

c3i

⎞

⎠+
k∑

j=1

	 j

⎛

⎝
� f er ti t− j

�mortit− j

� log(gdpit− j )

⎞

⎠+
⎛

⎝
a1

a2

a3

⎞

⎠ ecit−1 +
⎛

⎝
ε1i t

ε2i t

ε3i t

⎞

⎠ (4)

where the error-correction term ecit−1 represents the deviation from the equilibrium and the
adjustment coefficients a1, a2, and a3 capture how f er ti t , mortit , and log(gdpit ) respond to
deviations from the equilibrium relationship.

From the Granger representation theorem we know that at least one of the adjustment coef-
ficients must be nonzero if a long-run relationship between the variables exists. A significant
error-correction term also suggests long-run Granger causality, and thus long-run endogene-
ity (see, e.g., Hall and Milne 1994), whereas a non-significant adjustment coefficient implies
weak exogeneity and no long-run Granger causality running from the independent to the
dependent variable(s).14

13 We also checked the robustness of our results using the (balanced panel) data from Murtin (2012). These
results, which are reported in the Appendix, are very similar to those in Table 2.
14 In cointegrated systems we have to distinguish between short-run Granger noncausality (through the lagged
differenced explanatory variables) and long-run Granger noncausality (through the error-correction term).
Testing the null hypothesis of no long-run Granger causality is equivalent to testing the null hypothesis of
weak exogeneity. Weak exogeneity is a necessary (but not sufficient condition) for Granger noncausality in
cointegrated systems.
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Table 6 Weak exogeneity tests/long-run causality tests

Weak exogeneity of...
f er ti t morti t log(gdpit )
(significance of a1) (significance of a2) (significance of a3)

χ2 (1) 56.88 6.23 8.35

p values (0.000) (0.013) (0.004)

The number of degrees of freedom ν in the standard χ2(ν) tests correspond to the number of zero restrictions
The number of lags was determined by the general-to-specific procedure with a maximum of three lags

In the following, we test for weak exogeneity of fertility, mortality, and the level of eco-
nomic development-and thus for long-run Granger noncausality between f er ti t , mortit , and
log(gdpit ). We begin with eliminating the insignificant short-run dynamics in the model suc-
cessively according to the lowest t values (until the remaining variables are significant at the
five-percent level). Then we test the significance of the adjustment coefficients. This approach
has been used by Hendry (1995, Chap. 16), Urbain (1995); Juselius (2001); Lütkepohl and
Wolters (1998, 2003), and Herzer (2008), among others, to reduce the number of estimated
parameters (according to Hendry’s general-to-specific methodology) and to increase the
precision of the weak exogeneity tests on the a coefficients.15 Since all variables in the
model, including ecit−1, are stationary (because the level variables are integrated of order 1
and cointegrated), a conventional likelihood ratio test can be used to test the null hypothesis
of weak exogeneity, H0 : a1,2,3 = 0.

Table 6 presents the results. The error correction terms are significantly different from
zero in each equation, implying that the null hypothesis of weak exogeneity can be rejected
for f er ti t , mortit , and log(gdpit ) at least at the 5 % level. Thus, the weak exogeneity tests
suggest that all variables are endogenous in the long run, from which it can be concluded
that the statistical long-run causality indeed runs from mortit and log(gdpit ) to f er ti t , from
f er ti t to log(gdpit ), and from f er ti t to mortit .

To test the robustness of this conclusion, we calculate generalized impulse responses from
the full VAR-VECM system (with two lags).16 Unlike traditional impulse response analysis
(see, e.g. Lütkepohl and Reimers 1992), which considers orthogonalized shocks based on the
Cholesky decomposition, the generalized impulse response approach of Pesaran and Shin
(1998) desirably yields unique impulse response functions that are invariant to the ordering
of variables. It accounts for contemporaneous correlation of the residuals by examining the
shock in one of the variables, and then integrating out the effects of the other shocks according
to the observed distribution of errors.

Figure 2 shows the responses of fertility to a one-standard-deviation innovation in mor-
tality, the responses of mortality to one-standard-deviation impulse in fertility, the responses
of fertility to a one-standard-deviation innovation in log GDP per capita, and the responses
of log GDP per capita to one-standard-deviation impulse in fertility over a 50 year horizon;
the dashed lines mark plus and minus two standard errors obtained through Monte Carlo
simulations using 1,000 replications.

The upper panels focus on the interaction between fertility and mortality. As the left panel
shows, mortality has a gradual and permanent effect on fertility that reaches its full impact

15 The results (available on request) do not change substantially when alternative lag selection methods are
used.
16 We also experimented with VEC specifications of different lag orders, k = 1, 3, and found qualitatively
similar results.
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Fig. 2 Impulse-responses

not before 6 periods (30 years) after the shock (i.e. after about one generation) and that is
not statistically significant in the first period. This is consistent with the widespread belief in
demography that fertility behavior reacts only gradually on declining mortality. The upper
right panel confirms that there is also a significant positive feedback effect of fertility on
mortality; it reaches its maximum in the second period.

The bottom panels in Fig. 2 show the GDP-fertility interaction. The left panel indicates
that fertility gradually and permanently decreases in response to a one-standard-deviation
innovation in log GDP per capita and that the response becomes statistically different from
zero after the second period. The lower right panel documents that there is also a (delayed)
negative effect of fertility on GDP. It becomes statistically significant after about 15 years,
i.e. at about the time when the individuals born 15 years ago begin to enter the workforce.
This pattern of response of GDP per capita suggests that the dependency effect, which occurs
immediately at birth when GDP is subdivided among more people, becomes only significant
when it is amplified by the capital dilution effect, which occurs when the extra population
enters the workforce. The observed response of GDP is inconsistent with the mechanism
proposed by R&D-based growth theory (strictly interpreted). Our results do not support the
view that more people cause income per capita to grow.

Taken together and keeping in mind that GDP is measured in logs, the impulse-response
pattern and the Granger-causality tests confirm empirically—and to our best knowledge for
the first time—that the virtuous cycle, which has been stressed so much in development eco-
nomics and in unified growth theory, does indeed exist: Growth of income per capita leads to
reduced fertility, which in turn causes income growth to rise further, which leads to a further
decline of fertility etc. Low fertility is both a cause and consequence of successful economic
development.
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5 Concluding remarks

Given the available data from the last century our analysis has shown that (1) declining
mortality leads to declining fertility, that (2) growth of income per capita leads to declining
fertility, that (3) declining mortality per se is insufficient to explain the secular decline of
population growth over the last century, and that (4) fertility changes are both cause and
consequence of economic development such that the income-fertility interaction provides
a virtuous cycle of demo-economic development. We have furthermore shown that these
conclusions are robust to alternative estimation methods, potential outliers, sample selection,
different measures of mortality, the sample period, and the inclusion of education.

Under the prospect of perpetual income growth the result that there exists a linear nega-
tive relationship between income and fertility (and thus between fertility change and income
growth) may appear to be puzzling. After all, fertility and mortality are bounded to be non-
negative and cannot continue to fall infinitely with forever rising income. The evidence
derived from historical data, however, does not mean that the empirical model predicts a
persistence of this association for the (infinite) future.

With income growing further, the association between income growth and fertility change
has to become non-linear sooner or later and eventually it must disappear. The correct assess-
ment of our results is that so far (i.e. over the last century) a linear model describes the data
adequately, a fact that we have proven with extensive tests. The implied conclusion is thus
that the leveling-off of fertility’s reaction on income growth is not yet visible in the data by
the end of the 20th century.
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Appendix A1: Key variables by country over the sample period

See Figs. A.1, A.2, A.3 and A.4.

Fig. A.1 The 20 countries of our main sample on a map
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Fig. A.2 Fertility by country over the period 1900–1999. The countries from the left to the right are: Argentina,
Belgium, Canada, Chile, Colombia, Denmark, Finland, France, Italy, Japan, Mexico, Netherlands, Norway,
Portugal, Spain, Sri Lanka, Sweden, Switzerland, Uruguay, and Venezuela

Fig. A.3 Mortality by country over the period 1900–1999. The countries from the left to the right are:
Argentina, Belgium, Canada, Chile, Colombia, Denmark, Finland, France, Italy, Japan, Mexico, Netherlands,
Norway, Portugal, Spain, Sri Lanka, Sweden, Switzerland, Uruguay, and Venezuela
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Fig. A.4 Log GDP per capita by country over the period 1900–1999. The countries from the left to the
right are: Argentina, Belgium, Canada, Chile, Colombia, Denmark, Finland, France, Italy, Japan, Mexico,
Netherlands, Norway, Portugal, Spain, Sri Lanka, Sweden, Switzerland, Uruguay, and Venezuela

Appendix A2: Panel unit-root tests

In order to investigate the time-series properties of the data, we use the Levin, Lin, and Chu
(2002)(LLC), the Im, Pesaran, and Shin (2003) (IPS), and the cross-sectionally augmented
IPS test of Pesaran (2007). All these tests are based on an augmented Dickey–Fuller (ADF)
regression where the variable of interest is observed for N (= 20) cross-sectional units and
T (= 20) time periods:

�xit = zitγi + zitρi xi t−1 +
ki∑

j=1

ϕi j�xit−1 + εi t , i = 1, 2, . . . , N , t = 1, 2, . . . , T

(A.1)

where ki is the lag length, zit is a vector of deterministic terms, such as fixed effects or fixed
effects plus individual trends, and γi is the corresponding vector of coefficients.

The within-dimension-based LLC panel unit-root test pools the autoregressive coefficient
across the countries during the unit-root test and thus restrict the first-order autoregressive
parameter to be the same for all countries, ρi = ρ. Thus, the null hypothesis is that all series
contain a unit root, H0 : ρ = 0, while the alternative hypothesis is that no series contains a
unit root, H1 : ρ = ρi < 0, that is, all are (trend) stationary.

To conduct the LLC-test statistic, the following steps are performed. The first step is to
obtain the residuals, êi t , from individual regressions of �xit on its lagged values (and on
zit ), �xit = ∑ki

j=1 θ1i j�xit− j + zi jγi + eit . Second, xit−1 is regressed on the lagged values
of �xit (and on zit ) to obtain ν̂i t−1, that is, the (lagged) residuals of this regression, xit =∑ki

j=1 θ2i j�xit− j + zi jγi + νi t . In the third step, êi t is regressed on ν̂i t−1, êi t = δν̂i t−1 + ξi t .

The standard error, σ̂ 2
ei , of this regression is then used to normalize the residuals êi t and ν̂i t−1

(to control for heterogeneity in the variances of the series), ẽi t = êi t/σ̂
2
ei , ν̃i t−1 = ν̂i t−1/σ̂

2
ei .

Finally, ρ is estimated from a regression of ẽi t on ν̃i t−1, ẽi t = ρν̃i t−1 +ξi t . The conventional
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t statistic for the autoregressive coefficient ρ has a standard normal limiting distribution if the
underlying model does not include fixed effects and individual time trends (zit ). Otherwise,
this statistic has to be corrected using the first and second moments tabulated by Levin et al.
(2002) and the ratio of the long-run variance to the short-run variance, which accounts for the
nuisance parameters present in the specification. The limiting distribution of this corrected
statistic is normal as N → ∞ and T → ∞.

In contrast to the LLC test, the between-dimension-based IPS panel unit-root test allows the
first-order autoregressive parameter to vary across countries by estimating the ADF equation
separately for each country. Thus, the null hypothesis is that each series contains a unit-root,
H0 : ρi = 0 for all i , while the alternative hypothesis is that at least one of the individual
series in the panel is (trend) stationary, H1 : ρi < 0 for at least one i . H0 is tested against H1

using the standardized t bar test statistic

	i =
√

N
[
t̄N T − μ

]
√

ν
(A.2)

where t̄N T is the average of the N cross-section ADF t statistics, and μ and ν are, respec-
tively, the mean and variance of the average of the individual t statistics, tabulated by Im et
al. (2003). The standardized t bar statistic converges to a standard normal distribution as N
and T → ∞.

However, both the LLC and the IPS test procedures assume cross-sectional independence
and thus may lead to spurious inference if the errors, εi t , are not independent across i . There-
fore, we also use the cross-sectionally augmented IPS test, which allows for cross-sectional
dependence by augmenting the ADF regression with the cross-section averages of lagged
levels and first-differences of the individual series. An attractive feature of this test is that it
permits the individual countries to respond differently to the common time effects as reflected
by the country-specific coefficients on the cross-section averages of the variables. The cross-
section augmented ADF (CADF) regression, carried out separately for each country, is given
by

�xit = zitγi + ρxit−1 +
ki∑

j=1

ϕi j�xit− j + αi x̄t−1 +
ki∑

j=0

ηi j�x̄t− j + νi t (A.3)

where x̄t is the cross-section mean of xit , x̄t = N−1 ∑N
i=1 xit . The cross-section augmented

IPS statistic is a simple average of ti defined by

C I P S = N−1
N∑

i=1

ti (A.4)

where ti is the OLS t ratio of ρi in the above CADF regression. Critical values are tabulated
by Pesaran (2007).

Table A.1 reports the results of these tests for the variables in levels and in first differ-
ences. As can be seen, all three test statistics are unable to reject the null hypothesis that
f er ti t , mortit , and log(gdpit ) have a unit-root in levels. Since the unit-root hypothesis can
be rejected for the first differences, it can be concluded that all series are integrated of order
one, I (1).
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Table A.1 Panel unit root tests

Variables Deterministic terms LLC statistics IPS statistics CIPS statistics

Levels

f er ti t c, t 0.46 −0.72 −2.08

mortit c, t 2.1 4.06 −2.3

log(gdpit ) c, t −0.46 0.4 −2.32

First differences

� f er ti t c −6.38∗∗ −6.17∗∗ −2.55∗∗
�mortit c −1.75∗ −3.49∗∗ −2.41∗∗
� log(gdpit) c −2.71∗∗ −3.31∗∗ −2.44∗∗

c(t) indicates that we allow for different intercepts (and time trends) for each country
Two lags were selected to adjust for autocorrelation
The relevant 1 % (5 %) critical value for the CIPS statistics is −2.92 (−2.73) with an intercept and a linear
trend, and −2.40 (−2.21) with an intercept
∗∗ (∗) Denote significance at the 1 % (5 %) level

Appendix A3: Panel cointegration tests

We use several panel cointegration test procedures to determine whether there is a long-run
relationship between fertility, mortality, and economic development. The first is the two-
step residual-based procedure suggested by Pedroni (1999, 2004), which can be intuitively
described as follows. In the first step, the hypothesized cointegrating regression

f er ti t = ai + β1i mortit + β2i log(gdpit ) + εi t (A.5)

is estimated separately for each country, thus allowing for heterogeneous cointegrating vec-
tors. In the second step, the residuals, ε̂i t , from these regressions are tested for stationarity.
To test the null hypothesis of non-stationarity (or no cointegration) Pedroni proposes seven
statistics. Here, we employ the two statistics with the highest power for small T -panels
like ours: the panel ADF and group ADF statistics (see, e.g., Pedroni 2004; Wagner and
Hlouskova 2010. The former is analogous to the LLC (2002) panel unit root test, while
the latter is analogous to the IPS (2003) panel unit root test (both discussed above). The
standardized distributions for the test statistics are given by

κ = ϕ − μ
√

N√
ν

⇒ N (0, 1). (A.6)

where ϕ is the respective ADF panel or group ADF statistic, and μ and ν are the expected
mean and variance of the corresponding statistic, tabulated by Pedroni (1999).

In addition, we use the panel cointegration tests developed by Kao (1999). Kao follows
basically the same approach as Pedroni (1999, 2004), but constrains the cointegrating coef-
ficients to be homogeneous across countries by employing a within regression of the form

f er ti t = ai + β1mortit + β2 log(gdpit ) + eit . (A.7)

To test the stationarity of the residuals, êi t , from this regression Kao presents four within-
dimension-based DF test statistics and one within-dimension-based ADF statistic: The first
two DF statistics, DFρ and DFt , as well as the ADF statistic, assume strict exogeneity of the
regressors, while the other two DF-type tests, DF∗

ρ and DF∗
t , do not require this assumption.
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DFρ and DF∗
ρ are calculated based on the estimated first-order autoregressive coefficient in

the panel DF regression; the associated t statistic is used in calculating DFt and DF∗
t .

The problem with these two approaches is that they do not take into account potential
error cross-sectional dependence, which could bias the results. To test for cointegration in
the presence of possible cross-sectional dependence we use the two-step residual-based pro-
cedure suggested by Holly et al. (2010), who apply the CCE estimator of Pesaran (2006) in
the first-step regression. Like the cross-sectionally augmented IPS test, the CCE estimator
allows for cross-sectional dependencies that potentially arise from multiple unobserved com-
mon factors and permits the individual responses to these factors to differ across countries.
In our case, the cross-section augmented cointegrating regression (for the i th cross-section)
is given by

f er ti t = ai + β1i mortit + β2i log(gdpit ) + g1i f er tt + g2i mortt + g3i log(gdpt ) + ξi t

(A.8)

where the cross-section averages f er tt = N−1 ∑N
i=1 f er ti t , mortt = N−1 ∑N

i=1 mortit

and log(gdpt ) = N−1 ∑N
i=1 log(gdpit ) serve as proxies for the unobserved factors. In the

second step, we compute the cross-section augmented IPS statistic for the residuals from the
individual CCE long-run relations μ̂ = f er ti t − β̂1i mortit − β̂2i log(gdpit ), including an
intercept. In doing so, we account for unobserved common factors that could be correlated
with the observed regressors in both steps.

However, residual-based (panel) cointegration tests restrict the long-run elasticities to be
equal to the short-run elasticites. If this restriction is invalid, residual-based (panel) coin-
tegration tests may suffer from low power (see, e.g., Westerlund 2007). Another drawback
of single-equation, residual-based (panel) cointegration tests is that they are generally not
invariant to the normalization of the cointegrating regression, and, moreover, such tests are
unable to identify more than one cointegrating relationship in systems with more than two
variables. Therefore, we also use the Larsson et al. (2001) procedure, which is based on
Johansen’s (1988) system approach. Like the Johansen time-series cointegration test, the
Larsson et al. panel test treats all variables as potentially endogenous, thus avoiding normal-
ization problems inherent in residual-based cointegration tests. In addition, the Larsson et al.
procedure allows the long-run elasticities to differ from the short-run elasticities and hence
does not impose a possibly invalid common factor restriction. Finally, an important feature of
the Larsson et al. approach is that it allows the determination of the number of cointegrating
vectors.

The Larsson et al. approach involves estimating the Johansen vector VECM for each
country separately:

�yit = �i yi t−1 +
ki∑

i=1

	ik�yit−k + zitγi + εi t (A.9)

where yit is a p × 1 vector of endogenous variables (yit = [ f er ti t , mortit , log(gdpit ]′); p
is the number of variables) and �t is the long-run matrix of order p × p. If �i is of reduced
rank, ri < p, it is possible to let �i = αiβi , where βi is a p × ri matrix, the ri columns of
which represent the cointegrating vectors, and αi is a p × ri matrix whose p rows represent
the error correction coefficients. The null hypothesis is that all of the N countries in the panel
have a common cointegrating rank, i.e. at most r (possibly heterogeneous) cointegrating
relationships among the p variables: H0 : rank(�i ) = ri ≤ r for all i = 1, . . . , N , whereas
the alternative hypothesis is that all the cross-sections have a higher rank: H1 : rank (�i ) = p
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for all i = 1, . . . , N . To test H0 against H1, a panel cointegration rank trace-test statistic is
computed by calculating the average of the individual trace statistics, L RiT {H(r)|H(p)}.

L RN T {H(r)|H(p)} = 1

N

N∑

i=1

L RiT {H(r)|H(p)} (A.10)

and then standardizing it as follows:

�L R {H(r)|H(p)} =
√

N
[
L RN T {H(r)|H(p)} − E(Zk)

]
√

V ar(Zk)
⇒ N (0, 1). (A.11)

The mean E(Zk) and variance V ar(Zk) of the asymptotic trace statistic are tabulated by
Breitung (2005) for the model we use (the model with a constant in the cointegrating vector
and a linear trend in the data). However, a well-known problem is that the Johansen trace
statistics tend to over-reject the null in small samples. To avoid the Larsson et al. test also
overestimating the cointegrating rank, we compute the standardized panel trace statistics
based on small-sample corrected country-specific trace statistics. More specifically, to adjust
the individual trace statistics we use the small-sample correction factor suggested by Reinsel
and Ahn (1992):

L RiT {H(r)|H(p)} ×
[

T − ki × p

T

]
. (A.12)

The results of these tests are presented in Table A.2. As can be seen, all tests strongly
suggest that f er ti t , mortit , and log(gdpit ) are cointegrated. The standardized trace statis-
tics clearly supports the presence of one cointegrating vector. Also, the CIPS, the Kao, and
the Pedroni statistics reject the null hypothesis of no cointegration at the 1 level, implying

Table A.2 Cointegration tests

Pedroni (1999, 2004)
Panel ADF t-statistic −3.82∗∗
Group ADF t-statistic −3.24∗∗

Kao (1999)

DFρ statistic −3.38∗∗
DFt statistic −2.45∗∗
ADFt statistic −3.38∗∗
DF∗

ρ statistic −3.69∗∗
DF∗

t statistic −2.67∗∗
Holly et al. (2010)

CIPS statistic −2.47∗∗
Larsson et al. (2001) Cointegration rank

r = 0 r = 1 r = 2

Standardized panel trace statistics 4.70** 0.01 1.51

The relevant 1 % critical value for the CIPS statistic is −2.40. All other test statistics are asymptotically
normally distributed. The right tail of the normal distribution is used to reject the null hypothesis in the stan-
dardized panel trace statistics as recommended by Wagner and Wagner and Hlouskova (2010), while the left
tail is used for the other statistics. The number of lags in the ADF tests was determined by the Schwarz criterion
with a maximum number of four lags. For the Larsson et al. (2001) technique we used one lag
∗∗ Indicate a rejection of the null of no cointegration at the one percent level
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that there exists a single long-run relationship between fertility, mortality, and economic
development.

Appendix A4: Countries in the sample for Table 3

Algeria, Angola, Argentina, Austria, Bahrain, Bangladesh, Belgium, Benin, Bolivia,
Botswana, Brazil, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Cen-
tral African Republic, Chad, Chile, China, Colombia, Comoros, Congo (Dem. Rep.), Congo
(Rep.), Costa Rica, Cote d’Ivoire, Cuba, Denmark, Djibouti, Dominican Republic, Ecuador,
Egypt, El Salvador, Finland, France, Gabon, Gambia, Germany, Ghana, Guatemala, Guinea,
Guinea Bissau, Haiti, Honduras, Hungary, India, Indonesia, Iran, Iraq, Israel, Italy, Jamaica,
Japan, Jordan, Kenya, Korea (Republic), Kuwait, Laos, Lebanon, Lesotho, Liberia, Libya,
Madagascar, Malawi, Malaysia, Mali, Mauritania, Mauritius, Mexico, Mongolia, Morocco,
Mozambique, Myanmar, Namibia, Nepal, Netherlands, Nicaragua, Niger, Nigeria, North
Korea , Norway, Oman, Panama, Paraguay, Peru, Philippines, Portugal, Puerto Rico, Qatar,
Romania, Rwanda, Saudi Arabia, Senegal, Seychelles, Sierra Leone, Singapore, Somalia,
South Africa, Spain, Sri Lanka, Sudan, Swaziland, Sweden, Switzerland, Syria, Tanzania,
Thailand, Togo, Trinidad and Tobago, Tunisia, Uganda, United States, Uruguay, Venezuela,
Vietnam, Yemen, Zambia, and Zimbabwe.

Appendix A5: Further robustness tests

As a further robustness check, we first re-estimate the DOLS regression with time dummies.
The first row of Table A.3 presents the results. They qualitatively confirm the results in Table
2, although the coefficient on the income variable (−2.149) is much lower (in absolute value)
than its counterpart in Table 2 (−5.246). This could be due to two reasons:

First, as discussed in Sect. 4.2, the implicit assumption behind the use of common time
dummies is that the cross-sectional dependence induced by common time effects is driven
by a single common source and that all countries respond in the same way to the common
factors. This assumption is not very realistic. Second, since the coefficients on the time dum-
mies follow a negative trend, the common time effects and the (log) incomes of the countries
in our sample are highly correlated. The correlation coefficients range from −0.91 (Spain)
to −0.69 (Uruguay), suggesting that multicollinearity between log GDP per capita and the
trending time effects is a problem.

It is well known that there is always a certain degree of collinearity between stochastic and
deterministic trends in small samples, and that, therefore, depending on the degree of collin-
earity, the inclusion of a time trend can lead to seriously biased estimates. To further assess
whether this collinearity affects our main results, we re-estimate the DOLS regression both
with a common deterministic trend and country-specific time trends. The estimation results
are presented in the second and third rows of Table A.3. The coefficients on log(gdpit ) are
again lower than the corresponding coefficients in Table 2, but still negative and signifi-
cant.

Finally, the DOLS regression is also re-estimated with data from Murtin (2012). Since
(panel) cointegration techniques require the use of continues time series data, we use his bal-
anced panel data set, which contains 10 year data for 16 countries over the period 1870–2000
(14 time series observations per country). The results are reported in Table A.4. Again, the
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Table A.3 DOLS estimates with time dummies, common deterministic trend, and country-specific linear
trends

mortit log(gdpit )

With time dummies 0.222∗∗ (3.60) −2.149∗∗ (−2.15)

With a common deterministic trend 0.330∗ (2.15) −1.832∗ (−2.09)

With country-specific time trends 0.260∗ (2.13) −3.036∗ (−2.44)

The dependent variable is f er ti t
t Statistics in parentheses
The number of leads and lags was determined by the Schwarz criterion with a maximum number of three lags
∗∗ (∗) Indicate significance at the 1 % (5 %) level

Table A.4 Estimates with data from Murtin (2012)

mortit log(gdpit )

Without time dummies 0.782∗∗ (9.69) −4.163∗∗ (−5.56)

With time dummies 0.506∗∗ (5.72) −3.399∗ (−2.59)

The dependent variable is f er ti t
t Statistics in parentheses
The DOLS regression was estimated with one lead and one lag (as suggested by the Schwarz criterion)
∗∗ (∗) Indicate significance at the 1 % (5 %) level

coefficient on mortit is positive, while the coefficient on log(gdpit ) is negative (regardless
of whether common time dummies are included). From this, it can be concluded that our
results are also robust to different data sets.
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